Skip to main content Link Search Menu Expand Document (external link)

References

Core functionality

  • Thorson, J.T., Barnett, L.A.K., 2017. Comparing estimates of abundance trends and distribution shifts using single- and multispecies models of fishes and biogenic habitat. ICES J. Mar. Sci. 74, 1311–1321. https://doi.org/10.1093/icesjms/fsw193
  • Thorson, J.T., 2019. Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fish. Res. 210, 143–161. https://doi.org/10.1016/j.fishres.2018.10.013

Correlated spatio-temporal variation among species (a.k.a. “joint species distribution models”)

  • Thorson, J.T., Ianelli, J.N., Larsen, E., Ries, L., Scheuerell, M.D., Szuwalski, C., and Zipkin, E. 2016. Joint dynamic species distribution models: a tool for community ordination and spatiotemporal monitoring. Glob. Ecol. Biogeogr. 25(9): 1144–1158. doi:10.1111/geb.12464. url: http://onlinelibrary.wiley.com/doi/10.1111/geb.12464/abstract.
  • Thorson, J.T., Scheuerell, M.D., Shelton, A.O., See, K.E., Skaug, H.J., and Kristensen, K. 2015. Spatial factor analysis: a new tool for estimating joint species distributions and correlations in species range. Methods Ecol. Evol. 6(6): 627–637. doi:10.1111/2041-210X.12359. url: http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12359/abstract

Correlated spatio-temporal variation among years (a.k.a. “Empirical Orthogonal functions”)

  • Thorson, J.T., Ciannelli, L. and Litzow, M. (In press) Defining indices of ecosystem variability using biological samples of fish communities: a generalization of empirical orthogonal functions. Progress In Oceanography.

Index of abundance

  • Thorson, J.T., Shelton, A.O., Ward, E.J., Skaug, H.J., 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES J. Mar. Sci. J. Cons. 72(5), 1297–1310. doi:10.1093/icesjms/fsu243. URL: http://icesjms.oxfordjournals.org/content/72/5/1297

Standardizing samples of size/age-composition data

  • Thorson, J. T., and Haltuch, M. A. 2018. Spatio-temporal analysis of compositional data: increased precision and improved workflow using model-based inputs to stock assessment. Canadian Journal of Fisheries and Aquatic Sciences. doi:10.1139/cjfas-2018-0015. URL: http://www.nrcresearchpress.com/doi/abs/10.1139/cjfas-2018-0015#.W0oloTpKiUk

Range shift metrics

  • Thorson, J.T., Pinsky, M.L., Ward, E.J., 2016. Model-based inference for estimating shifts in species distribution, area occupied, and center of gravity. Methods Ecol. Evol. 7(8), 990-1008. doi:10.1111/2041-210X.12567. URL: http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12567/full

Effective area occupied metric

  • Thorson, J.T., Rindorf, A., Gao, J., Hanselman, D.H., and Winker, H. 2016. Density-dependent changes in effective area occupied for sea-bottom-associated marine fishes. Proc R Soc B 283(1840): 20161853. doi:10.1098/rspb.2016.1853. URL: http://rspb.royalsocietypublishing.org/content/283/1840/20161853.

Spatio-temporal statistical methods

  • Thorson, J.T., Skaug, H.J., Kristensen, K., Shelton, A.O., Ward, E.J., Harms, J.H., Benante, J.A., 2014. The importance of spatial models for estimating the strength of density dependence. Ecology 96, 1202–1212. doi:10.1890/14-0739.1. URL: http://www.esajournals.org/doi/abs/10.1890/14-0739.1
  • Shelton, A.O., Thorson, J.T., Ward, E.J., Feist, B.E., 2014. Spatial semiparametric models improve estimates of species abundance and distribution. Can. J. Fish. Aquat. Sci. 71, 1655–1666. doi:10.1139/cjfas-2013-0508. URL: http://www.nrcresearchpress.com/doi/abs/10.1139/cjfas-2013-0508#.VMafDf7F_h4

Accounting for fish shoals using robust observation models

  • Thorson, J. T., I. J. Stewart, and A. E. Punt. 2012. Development and application of an agent-based model to evaluate methods for estimating relative abundance indices for shoaling fish such as Pacific rockfish (Sebastes spp.). ICES Journal of Marine Science 69:635–647. URL: http://icesjms.oxfordjournals.org/content/69/4/635
  • Thorson, J. T., I. Stewart, and A. Punt. 2011. Accounting for fish shoals in single- and multi-species survey data using mixture distribution models. Canadian Journal of Fisheries and Aquatic Sciences 68:1681–1693. URL: http://www.nrcresearchpress.com/doi/abs/10.1139/f2011-086#.VMafcf7F_h4

Accounting for variation among vessels

  • Helser, T.E., Punt, A.E., Methot, R.D., 2004. A generalized linear mixed model analysis of a multi-vessel fishery resource survey. Fish. Res. 70, 251–264. doi:10.1016/j.fishres.2004.08.007. url: http://www.sciencedirect.com/science/article/pii/S0165783604001705
  • Thorson, J.T., Ward, E.J., 2014. Accounting for vessel effects when standardizing catch rates from cooperative surveys. Fish. Res. 155, 168–176. doi:10.1016/j.fishres.2014.02.036. url: http://www.sciencedirect.com/science/article/pii/S0165783614000836

Accounting for fisher targetting in fishery-dependent data

  • Thorson, J.T., Fonner, R., Haltuch, M., Ono, K., and Winker, H. In press. Accounting for spatiotemporal variation and fisher targeting when estimating abundance from multispecies fishery data. Can. J. Fish. Aquat. Sci. doi:10.1139/cjfas-2015-0598. URL: http://www.nrcresearchpress.com/doi/abs/10.1139/cjfas-2015-0598
  • Dolder, P.J., Thorson, J.T., Minto, C., 2018. Spatial separation of catches in highly mixed fisheries. Sci. Rep. 8, 13886. https://doi.org/10.1038/s41598-018-31881-w

Bias-correction of estimated indices of abundance

  • Thorson, J.T., and Kristensen, K. 2016. Implementing a generic method for bias correction in statistical models using random effects, with spatial and population dynamics examples. Fish. Res. 175: 66–74. doi:10.1016/j.fishres.2015.11.016. url: http://www.sciencedirect.com/science/article/pii/S0165783615301399

Estimating and attributing variation in size-structured distribution

  • Kai, M., Thorson, J. T., Piner, K. R., and Maunder, M. N. 2017. Spatio-temporal variation in size-structured populations using fishery data: an application to shortfin mako (Isurus oxyrinchus) in the Pacific Ocean. Canadian Journal of Fisheries and Aquatic Sciences. doi:10.1139/cjfas-2016-0327. URL: http://www.nrcresearchpress.com/doi/abs/10.1139/cjfas-2016-0327#.W0olqjpKiUk.
  • Thorson, J. T., Ianelli, J. N., and Kotwicki, S. 2018. The relative influence of temperature and size-structure on fish distribution shifts: A case-study on Walleye pollock in the Bering Sea. Fish and Fisheries. doi:10.1111/faf.12225. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/faf.12225.

Estimating fishing impacts using spatial surplus production modelling

  • Thorson, J. T., Jannot, J., and Somers, K. 2017. Using spatio-temporal models of population growth and movement to monitor overlap between human impacts and fish populations. Journal of Applied Ecology, 54: 577–587.doi:10.1111/1365-2664.12664. URL: https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2664.12664

Estimating species interactions using multispecies Gompertz model

  • Thorson, J. T., Munch, S. B., and Swain, D. P. 2017. Estimating partial regulation in spatiotemporal models of community dynamics. Ecology, 98: 1277–1289. doi:10.1002/ecy.1760. URL: https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecy.1760
  • Thorson, J.T., Adams, G., Holsman, K., In press. Spatio-temporal models of intermediate complexity for ecosystem assessments: A new tool for spatial fisheries management. Fish and Fisheries. https://doi.org/10.1111/faf.12398

Estimating synchrony among species and locations as measure of risk-exposure

  • Thorson, J.T., Scheuerell, M.D., Olden, J.D., Schindler, D.E., 2018. Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes. Proc R Soc B 285, 20180915. https://doi.org/10.1098/rspb.2018.0915

Forecasting future changes in distribution or abundance

  • Thorson, 2019. Forecast skill for predicting distribution shifts: A retrospective experiment for marine fishes in the Eastern Bering Sea. Fish Fish. 20(1): 159-173. https://doi.org/10.1111/faf.12330

Combining multiple types of data (e.g., biomass, count, encounter)

  • Grüss, A. and Thorson, J.T. (2019) Developing spatio-temporal models using multiple data types for evaluating population trends and habitat usage. ICES Journal of Marine Science 76, 1748–1761. doi:10.1093/icesjms/fsz075.

Spatially varying coefficient models and their use for fisheries oceanography

  • Thorson, J.T., 2019. Measuring the impact of oceanographic indices on species distribution shifts: The spatially varying effect of cold-pool extent in the eastern Bering Sea. Limnol. Oceanogr. 64, 2632–2645. https://doi.org/10.1002/lno.11238